Abstract

We propose and analyze a randomized zeroth-order optimization method based on approximating the exact gradient by finite differences computed in a set of orthogonal random directions that changes with each iteration. A number of previously proposed methods are recovered as special cases including spherical smoothing, coordinate descent, as well as discretized gradient descent. Our main contribution is proving convergence guarantees as well as convergence rates under different parameter choices and assumptions. In particular, we consider convex objectives, but also possibly non-convex objectives satisfying the Polyak-Łojasiewicz (PL) condition. Theoretical results are complemented and illustrated by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.