Abstract
Zeroth-order (ZO) optimization is increasingly embraced for solving big data and machine learning problems when explicit expressions of the gradients are difficult or infeasible to obtain. It achieves gradient-free optimization by approximating the full gradient via efficient gradient estimators. Some recent important applications include: a) generation of prediction-evasive, black-box adversarial attacks on deep neural networks, b) online network management with limited computation capacity, c) parameter inference of black-box/complex systems, and d) bandit optimization in which a player receives partial feedback in terms of loss function values revealed by her adversary. This tutorial aims to provide a comprehensive introduction to recent advances in ZO optimization methods in both theory and applications. On the theory side, we will cover convergence rate and iteration complexity analysis of ZO algorithms and make comparisons to their first-order counterparts. On the application side, we will highlight one appealing application of ZO optimization to studying the robustness of deep neural networks - practical and efficient adversarial attacks that generate adversarial examples from a black-box machine learning model. We will also summarize potential research directions regarding ZO optimization, big data challenges and some open-ended data mining and machine learning problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.