Abstract
This paper proposes a differential privacy decentralized zeroth-order gradient tracking optimization (DP-DZOGT) algorithm for solving optimization problems of decentralized systems, where the gradient information of the function is unknown. To address the challenge of unknown gradient information, a one-point zeroth-order gradient estimator (OPZOGE) is constructed, which can estimate the gradient based on the function value and guide the update of decision variables. Additionally, to prevent privacy leakage of agents, random noise is introduced into both the state and the gradient of the agents, which effectively enhances the level of privacy protection. The linear convergence of the proposed DP-DZOGT under a fixed step size can be guaranteed. Moreover, it has been applied to the fields of smart grid (SG) and decentralized federated learning (DFL). Finally, the effectiveness of the algorithm is validated through three numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.