Abstract

Leg capacitor energy balancing control is one of the crucial issues for stable operation of a cascaded H-bridge (CHB) converter. Because this topology inherently consists of numerous submodule cells with DC capacitors, the cell voltages and leg capacitor energy instantaneously fluctuate depending on operation sequence of the CHB converter. In general, a wye-connected CHB-converter-based static synchronous compensator (STATCOM) utilizes a zero-sequence voltage component for leg capacitor energy balancing. In this paper, to improve the dynamics of leg energy balancing control, a feedforward calculation method of the zero-sequence voltage injection is proposed. The feedforward term can be instantaneously calculated by using the information from the measured leg voltages and leg currents, and the method ensures successful regulation of the leg energy balance even under unbalanced grid and load conditions. Moreover, the verification of the proposed method is supported by the mathematical vector theorems. A 50MVA full-scale wye-connected CHB–STATCOM system simulation was performed to verify the proposed feedforward calculation method considering unbalanced grid as well as unbalanced load conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.