Abstract

Two-dimensional graphite sheets with a certain type of edges are known to support boundary states localized near the edges. Forming a flat band with a sharp peak in the density of states at the Fermi energy, they can trigger a magnetic instability or a distortion of the lattice in the presence of electron–electron or electron–phonon interactions. We shall discuss a relationship between chiral symmetry, which is the origin of the zero-energy edge states, and several types of induced orders such as spin density waves or lattice distortions. We also investigate electron correlation effects on the edge states for a wrapped quasi one-dimensional geometry, i.e., carbon nanotube, by means of the renormalization group and the open boundary bosonization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call