Abstract

When normal metals (NMs) are attached to topological insulators or topological superconductors, it is conceivable that the quantum states in these finite adjacent materials can intermix. In this case---and because the NM usually does not possess the same symmetry as the topological material---it is pertinent to ask whether zero-energy edge states in the topological layer are affected by the presence of the NM. To address this issue, we consider three prototype systems simulated by tight-binding models, namely a Su-Schrieffer-Heeger/NM, a Kitaev/NM, and a Chern insulator/NM. For all junctions investigated, we find that there exist trivial ``fine-tuned'' zero-energy states in the NM layer that can percolate into the topological region, thus mimicking a topological state. These zero-energy states are created by fine-tuning the NM chemical potential such that some of the NM states cross zero energy; they can occur even when the topological material is in the topologically trivial phase, and exist over a large region of the topological phase diagram. Interestingly, the true Majorana end modes of the Kitaev/NM model cannot be crossed by any NM state, as the NM metal layer in this case does not break particle-hole symmetry. On the other hand, when the chiral symmetry of the Su-Schrieffer-Heeger chain is broken by the attached NM, crossings are allowed. In addition, even in Chern insulators that do not preserve nonspatial symmetries, but the topological edge state self-generates a symmetry eigenvalue, such a fine-tuned zero-energy state can still occur. Our results indicate that when a topological material is attached to a metallic layer, one has to be cautious as to identify true topological edge states merely from their energy spectra and wave function profiles near the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call