Abstract
This paper is concerned with two-person zero-sum games for continuous-time Markov chains, with possibly unbounded payoff and transition rate functions, under the discounted payoff criterion. We give conditions under which the existence of the value of the game and a pair of optimal stationary strategies is ensured by using the optimality (or Shapley) equation. We prove the convergence of the value iteration scheme to the game's value and to a pair of optimal stationary strategies. Moreover, when the transition rates are bounded we further show that the convergence of value iteration is exponential. Our results are illustrated with a controlled queueing system with unbounded transition and reward rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.