Abstract
In this article, we study continuous-time Markov decision processes in Polish spaces. The optimality criterion to be maximized is the expected discounted criterion. The transition rates may be unbounded, and the reward rates may have neither upper nor lower bounds. We provide conditions on the controlled system's primitive data under which we prove that the transition functions of possibly non-homogeneous continuous-time Markov processes are regular by using Feller's construction approach to such transition functions. Then, under continuity and compactness conditions we prove the existence of optimal stationary policies by using the technique of extended infinitesimal operators associated with the transition functions of possibly non-homogeneous continuous-time Markov processes, and also provide a recursive way to compute (or at least to approximate) the optimal reward values. The conditions provided in this paper are different from those used in the previous literature, and they are illustrated with an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.