Abstract
Voice conversion (VC) aims to convert the voice from a source speaker to a target speaker without modifying the linguistic content. Zero-shot voice conversion has attracted significant attention in the task of VC because it can achieve conversion for speakers who did not appear during the training stage. Despite the significant progress made by previous methods in zero-shot VC, there is still room for improvement in separating speaker information and content information. In this paper, we propose a zero-shot VC method based on feature disentanglement. The proposed model uses a speaker encoder for extracting speaker embeddings, introduces mixed speaker layer normalization to eliminate residual speaker information in content encoding, and employs adaptive attention weight normalization for conversion. Furthermore, dynamic convolution is introduced to improve speech content modeling while requiring a small number of parameters. The experiments demonstrate that performance of the proposed model is superior to several state-of-the-art models, achieving both high similarity with the target speaker and intelligibility. In addition, the decoding speed of our model is much higher than the existing state-of-the-art models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.