Abstract
Organic electrode materials (OEMs), composed of abundant elements such as carbon, nitrogen, and oxygen, offer sustainable alternatives to conventional electrode materials that depend on finite metal resources. The vast structural diversity of organic compounds provides a virtually unlimited design space; however, exploring this space through Edisonian trial-and-error approaches is costly and time-consuming. In this work, we develop a new framework, SPARKLE, that combines computational chemistry, molecular generation, and machine learning to achieve zero-shot predictions of OEMs that simultaneously balance reward (specific energy), risk (solubility), and cost (synthesizability). We demonstrate that SPARKLE significantly outperforms alternative black-box machine learning algorithms on interpolation and extrapolation tasks. By deploying SPARKLE over a design space of more than 670,000 organic compounds, we identified ≈5000 novel OEM candidates. Twenty-seven of them were synthesized and fabricated into coin-cell batteries for experimental testing. Among SPARKLE-discovered OEMs, 62.9% exceeded benchmark performance metrics, representing a 3-fold improvement over OEMs selected by human intuition alone (20.8% based on six years of prior lab experience). The top-performing OEMs among the 27 candidates exhibit specific energy and cycling stability that surpass the state-of-the-art while being synthesizable at a fraction of the cost.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.