Abstract

For the open winding permanent magnet synchronous motor (OW-PMSM) with leg open-circuit faults, a novel zero-sequence current (ZSC) suppression method with asymmetric zero-sequence voltage (ZSV) injection is proposed in this article. To realize the fault-tolerant control (FTC) in leg open-circuit fault conditions, the leg-sharing method is developed, where the output terminal of the faulty leg is connected to that of the remaining equivalent leg. However, the ZSC increases in the FTC mode, which causes severe torque ripple and system performance degradation. If the traditional ZSC suppression method is still adopted, the suppression performance is decreased. Besides, an undesired voltage vector is introduced, resulting in current distortion. To solve these problems, a novel ZSC suppression strategy is put forward. By asymmetrically adjusting the voltage output of the remaining legs, the ZSC of OW-PMSM in FTC mode can be effectively suppressed. Moreover, the proposed strategy is suitable for both the single-leg and double-leg FTC modes, where the ZSC suppression performance is almost the same as that of the traditional method in normal operation mode. Furthermore, experiments are performed on an OW-PMSM to verify the effectiveness of the proposed ZSC suppression scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.