Abstract
We present the first observation of vibrational transitions in the [H3O]- anion, an intermediate in the anion-molecule reaction of water, H2O, and hydride, H-, using a laser-induced isotopic H/D exchange reaction action spectroscopy scheme applied to anions. The observed bands are assigned as the fundamental and first overtone of the H2O-H- vibrational stretching mode, based on anharmonic calculations within the vibrational perturbation theory and vibrational configuration interaction. Although the D2O·D- species has the lowest energy, our experiments confirm the D2O·H- isotope to be a sink of the H/D exchange reaction. Ab initio calculations corroborate that the formation of D2O·H- is favored, as the zero-point-energy difference is larger between D2 and H2 than between D2O·H- and D2O·D-.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.