Abstract

At the CO2storage pilot site near the town of Ketzin (35 km west of Berlin, Germany) the sandstone reservoir at 630 m–650 m depth is thin and heterogeneous. The time-lapse analysis of zero-offset VSP measurements shows that CO2-induced amplitude changes can be observed on near-well corridor stacks. Further, we investigate whether CO2-induced amplitude changes in the monitoring data can be used to derive geometrical and petrophysical parameters governing the migration of CO2within a brine saturated sandstone aquifer. 2D seismic-elastic modelling is done to test the processing workflow and to perform a wedge modelling study for estimation of the vertical expansion of the CO2plume. When using the NRMS error as a measure for the similarity between the modelled and recorded repeat traces, the best match is achieved for a plume thickness of 6-7 m within the reservoir sandstone of 8 m thickness. With band limited impedance inversion a velocity reduction at the top of the reservoir of 30%, influenced by casing reverberations as well as CO2injection, is found. The relation of seismic amplitude to CO2saturated layer thickness and CO2-induced changes in P-wave velocities are important parameters for the quantification of the injected CO2volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.