Abstract

Paleoceanographic and stratigraphic methods, based on high-resolution compressional wave ( p-wave) velocity measurements, have been applied to the studies of late Quaternary deep-sea carbonates in the western and eastern equatorial Atlantic. The measurements provide sonostratigraphic records in which changes in p-wave velocity parallel the changes from a glacial to an interglacial climate: Maxima in p-wave velocity (greater than 1540 m/s) occur during interglacial oxygen isotope stages 1, 5 and 7. Minima (1490 m/s) occur during glacial oxygen isotope stages 2, 4 and 6. Changes in p-wave velocity parallel past changes in carbonate accumulation and sediment coarse fraction, and allow a detailed core to core correlation. From these results two main patterns emerge: (1) In cores from shallower than 4300 m and from well above the present lysocline, large temporal changes in p-wave velocity parallel the production of planktonic foraminifera and the climatic history recorded in the sediments, and (2) below 4300 m, the position of the foraminiferal lysocline in the western equatorial Atlantic, large downcore p-wave velocity fluctuations gradually disappear due to dissolution of carbonate sediments. Dissolution also causes a distinct decrease in p-wave velocity and acoustic reflectivity in surface sediments across the present foraminiferal lysocline. Thus, past changes in the position of the foraminiferal lysocline or calcite compensation depth that caused distinct changes in reflectivity of sediments should lead to distinct reflectors within sediment columns. Their distribution can be utilized to map paleowater masses with different degrees of carbonate saturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.