Abstract

이 논문에서는 정적분의 수치계산 방법 중에 하나인 사다리꼴 공식의 평균오차를 zero mean-Gaussian을 이용하여 연구한다. 구간 [0,1]에 n개의 소구간을 잡고 계산의 단순화를 위하여 각 소구간의 길이가 같다고 하고 길이를 h라 하면, <TEX>$r{\leq}2$</TEX>일 때, 상수 <TEX>$c_r$</TEX>을 직접 계산하여 연속된 두개의 소구간 위에서 단순 사다리꼴공식과 복합 사다리꼴공식 사이의 평균오차가 <TEX>$O(h^{2r+3})$</TEX>임을 보인다. In this paper, we study the average case error of the Trapezoidal rule using zero mean-Gaussian. Assume that we have n subintervals (for simplicity equal length) partitioning [0,1] and that each subinterval has the length h. Then, for <TEX>$r{\leq}2$</TEX>, we show that the average error between simple Trapezoidal rule and the composite Trapezoidal rule on two consecutive subintervals is bounded by <TEX>$h^{2r+3}$</TEX> through direct computation of constants <TEX>$c_r$</TEX>.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.