Abstract

We report high-performance 0D-2D hybrid photodetectors integrated with tunable band gap perovskite (CsPbI3, CsXFAX-1PbI3, and FAPbI3) quantum dots and MOCVD-grown bilayer MoS2. In our hybrid structure, the lead halide PQDs can be utilized as an absorbing layer of light of specific wavelengths and transfer the photogenerated carriers to the MoS2 transport layer. With tunable wavelength lead halide PQDs, the 0D-2D hybrid photodetector shows a high responsivity up to 107 AW-1 and high specific detectivity exceeding 1013 Jones due to the difference in the built-in potential between PQDs and multilayer MoS2 layers. This work proposes the possibility of fabricating high-performance photodetectors by hybridizing PQDs of various band gaps with 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.