Abstract

Zeolitic imidazolate frameworks (ZIFs), a subclass of metal organic frameworks, are built of tetrahedral metal ions bridged by imidazolates. They have permanent porosity and relatively high thermal and chemical stability, which make them attractive candidates for many industrial applications. In recent years, significant progress has been made in developing ZIFs into membranes and thin films for gas separation, liquid separation (pervaporation) and functional devices. Various techniques, such as direct synthesis, secondary synthesis, reactive seeding and functional chemicals as linkers, and contra-diffusion synthesis, have been reported for the fabrication of ZIF membranes and films. As ZIFs have good compatibility with polymers, they have been incorporated into polymers with high loadings to form mixed matrix membranes. The resulting symmetric dense or asymmetric composite membranes exhibit good performance in gas separation and liquid separation via pervaporation. The recent developments of ZIF membranes/films, ZIF-polymer mixed matrix membranes and their applications are reviewed in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.