Abstract

The landscape of possible polymorphs for some metal-organic frameworks (MOFs) can pose a challenge for controlling the outcome of their syntheses. Demonstrated here is the use of a template to control in the vapor-assisted formation of zeolitic imidazolate framework (ZIF) powders and thin films. Introducing a small amount of either ethanol or dimethylformamide vapor during the reaction between ZnO and 4,5-dichloroimidazole vapor results in the formation of the porous ZIF-71 phase, whereas other conditions lead to the formation of the dense ZIF-72 phase or amorphous materials. Time-resolved in situ small-angle X-ray scattering reveals that the porous phase is metastable and can be transformed into its dense polymorph. This transformation is avoided through the introduction of template vapor. The porosity of the resulting ZIF powders and films was studied by N2 and Kr physisorption, as well as positron annihilation lifetime spectroscopy. The templating principle was demonstrated for other members of the ZIF family as well, including the ZIF-7 series, ZIF-8_Cl, and ZIF-8_Br.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.