Abstract

The problem of nitrogen removal in eutrophic water needs to be solved. Two new autotrophic nitrogen removal technologies, ammonia oxidation coupled with Fe(III) reduction (Feammox) and Nitrate-dependent Fe(II) oxidation (NDFO), have been shown to have the potential to treat eutrophic water. However, the continuous addition of iron sources not only costs more, but also leads to sludge mineralization. In this study, nano-sized iron powder was loaded on the surface of K3 filler as a solid iron source for the extracellular metabolism of iron-trophic bacteria. At the same time, due to the high selective adsorption of zeolite for ammonia can improve the low nitrogen metabolism rate caused by low nitrogen concentrations in eutrophic water, three kinds of modified functional biological carriers were prepared by mixing zeolite powder and iron powder in different proportions (Z1, Zeolite:iron = 1; Z2, Zeolite:iron = 2; Z3, Zeolite:iron = 3). Z3 exhibited the best performance, with removal efficiencies of 54.8% for total nitrogen during 70 days of cultivation. The chemical structure and state of iron compounds changed under microorganism activity. The ex-situ test detected high NDFO and Feammox activities, with values of 1.02 ± 0.23 and 0.16 ± 0.04 mgN/gVSS/h. The enrichment of NDFO bacteria (Gallionellaceae, 0.73%-1.43%–0.74%) and Feammox bacteria (Alicycliphilus, 1.51%-0.88%–2.30%) indicated that collaboration between various functional microorganisms led to autotrophic nitrogen removal. Hence, zeolite/iron-modified biocarrier could drive the Fe(II)/Fe(III) cycle to remove nitrogen autotrophically from eutrophic water without carbon and Fe resource addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call