Abstract

Zeolites are strongly hydrophilic materials that are widely used as water adsorbents. They are also promising candidates for antifogging coatings; however, researchers have yet to devise a suitable method for coating glass substrates with zeolite-based films. Here, we report on a direct wet deposition technique that is capable of casting zeolite films on glass substrates without exposing the glass to highly basic solutions or the vapors used in zeolite synthesis. We began by preparing cast solutions of pure silica zeolite MFI synthesized in hydrothermal reactions of various durations. The solutions were then applied to glass substrates via spin-on deposition to form zeolite films. The resulting zeolite MFI thin films were characterized in terms of transmittance to visible light, surface topography, thin film morphology, and crystallinity. Wetting and antifogging properties were also probed. We found that hydrophilicity and antifogging capability increased with the degree of thin film crystallinity. We also determined that the presence of the amorphous silica in the thin films is critical to transparency. Fabricating high-performance zeolite-based antifogging coatings requires an appropriate composition of zeolite crystals and amorphous silica.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.