Abstract
We show that, under the presence of a static magnetic field, the photon eigenfrequencies of a circular gyromagnetic cylinder experience a splitting that is proportional to the angular momentum density of light at the cylinder surface. Such a splitting of the photonic states is similar to the Zeeman splitting of electronic states in atoms. This leads to some unusual decoupling properties of these nondegenerate photonic angular momentum states, which are demonstrated through numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.