Abstract

ABSTRACTWe investigated the effect of an added mass emulating a transmitter on the flight kinematics of zebra finches (Taeniopygia guttata), both to identify proximal effects of loading and to test fundamental questions regarding the intermittent flight of this species. Zebra finch, along with many species of relatively small birds, exhibit flap-bounding, wherein the bird alternates periods of flapping with flexed-wing bounds. Mathematical modeling suggests that flap-bounding is less aerodynamically efficient than continuous flapping, except in limited circumstances. This has prompted the introduction of two major hypotheses for flap-bounding – the ‘fixed-gear’ and ‘cost of muscle activation/deactivation’ hypotheses – based on intrinsic properties of muscle. We equipped zebra finches flying at 10 m s−1 with a transmitter-like load to determine if their response was consistent with the predictions of these hypotheses. Loading caused finches to diverge significantly from their unloaded wingbeat kinematics. Researchers should carefully consider whether these effects impact traits of interest when planning telemetry studies to ensure that tagged individuals can reasonably be considered representative of the overall population. In response to loading, average wingbeat amplitude and angular velocity decreased, inconsistent with the predictions of the fixed-gear hypothesis. If we assume that finches maintained muscular efficiency, the reduction in amplitude is inconsistent with the cost of the muscle activation/deactivation hypothesis. However, we interpret the reduction in wingbeat amplitude and increase in the proportion of time spent flapping as evidence that loaded finches opted to increase their aerodynamic efficiency – a response which is consistent with the latter hypothesis.

Highlights

  • Telemetry is a widely used technology for tracking the movement of animals and has expanded our knowledge of countless species and systems (Hussey et al, 2015; Kays et al, 2015)

  • We investigated the impact of the added mass of a transmitter on the flight kinematics of zebra finches (Taeniopygia guttata), both to identify proximal effects of loading and as a means to investigate fundamental questions regarding the flying gait of this species

  • The mass of a transmitter has the potential to void the assumption that the kinematics and power output of tagged animals are representative of the population from which they are drawn

Read more

Summary

Introduction

Telemetry is a widely used technology for tracking the movement of animals and has expanded our knowledge of countless species and systems (Hussey et al, 2015; Kays et al, 2015). As we enter the ‘golden age of animal tracking science’ (Kays et al, 2015) there is increased pressure to understand the impact of telemetry on study animals (Mcintyre, 2015). A key assumption of telemetry studies is that tagged animals are representative of the overall population (i.e. a representative sample), but if the transmitter significantly affects the behavior of tagged animals, this assumption is clearly violated (Guthery and Lusk, 2004; Millspaugh and Marzluff, 2001)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call