Abstract

Chemoresistance renders a challenge to the clinics to treat breast cancer patients. Current treatment strategies are effective in mitigating tumor growth but remain largely ineffective against cancer-initiating cells or breast Cancer Stem Cells (CSCs). Epithelial-to-mesenchymal-transition (EMT) regulates breast CSC physiology. Zinc finger E-box binding homeobox 1 (ZEB1) is a key EMT-transcription factor that regulates breast CSC - differentiation and metastasis. However, its potential role in modulating tumor chemoresistance has not yet been fully understood. In-silico analysis revealed a higher ZEB1 expression in breast cancer patients that leads to decreased overall and relapse-free survival. We generated sorted breast CSC with stable ZEB1 overexpression (CD24−/CD44+GFP-ZEB1) and/or silencing (CD24−/CD44+ZEB1 shRNA) as well as breast cancer cells with stable ZEB1 overexpression (CD24+GFP-ZEB1) and/or silencing (CD24+ZEB1 shRNA). An increased colony-forming efficiency and doxorubicin accumulation correlated with decreased promoter activity and expression profile of ABCC1 drug-efflux ABC transporter in CD24−/CD44+GFP-ZEB1. Additionally, CD24−/CD44+GFP-ZEB1 demonstrated doxorubicin-induced higher anti-apoptotic and lower pro-apoptotic protein expressions in the mitochondrial and cytosolic fractions. Chemoresistant CD24−/CD44+GFP-ZEB1 cells depicted 1000-fold higher IC-50 values of doxorubicin and decreased activation of JNK-p38 stress kinase molecular signaling-dependent mammosphere forming efficiency to evade apoptosis. Thus, ZEB1 and its downstream effectors are plausible therapeutic targets for the mitigation of breast cancer chemoresistance in patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.