Abstract

PurposeZakat during the COVID-19 outbreak has played a vital role and has been significantly discussed in the virtual environment. Such information about zakat in the virtual world creates unstructured data, which contains important information and knowledge. This paper aims to discover knowledge related to zakat administration during the pandemic from the information in a virtual environment. Furthermore, the discussion is contextualised to the socio-economic debates.Design/methodology/approachThis is a qualitative study operated via text mining to discover knowledge of zakat administration during the COVID-19 pandemic. The National Board of Zakat Republic of Indonesia (BAZNAS RI) is selected for a single case study. This paper samples BAZNAS RI’s situation report on COVID-19 from its virtual website. The data consists of 40 digital pages containing 19,812 characters, 3,004 words and 3,003 white spaces. The text mining analytical steps are performed via RStudio. The following R packages, networkD3, igraph, ggraph and ggplot2 are used to run the Latent Dirichlet Allocation (LDA) for topic modelling.FindingsThe machine learning analysis via RStudio results in the 16 topics associated with the 3 primary topics (i.e. Education, Sadaqah and Health Services). The topic modelling discovers knowledge about BAZNAS RI’s assistance for COVID-19 relief, which may help the readers understand zakat administration in times of the pandemic from BAZNAS RI’s virtual website. This finding may draw the theory of socio-economic zakat, which explains that zakat as a religious obligation plays a critical role in shaping a Muslim community's social and economic processes, notably during the unprecedented times of COVID-19.Research limitations/implicationsThis study uses data from a single zakat institution. Thus, the generalisation of the finding is limited to the sampled institution.Practical implicationsThis research is both theoretically and practically important for academics and industry professionals. This paper contributes to the novelty in performing text mining via R in gaining knowledge about the recent zakat administration from a virtual website. The finding of this study (i.e. the topic modelling) is practically essential for zakat stakeholders to understand the contribution of zakat in managing the COVID-19 impacts.Social implicationsThis work derives a theory of “socio-economic zakat” that explains the importance of a zakat institution in activating zakat for managing socio-economic issues during the pandemic. Thus, paying zakat to an authorised institution may actualise more maslahah (public interest) compared to paying it directly to the asnaf (zakat beneficiaries) without any measurementOriginality/valueThis study is among the pioneers in gaining knowledge from Indonesia’s zakat management during the COVID-19 outbreak via text mining. The authors’ way of analysing data from the virtual website using RStudio can advance Islamic economics literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.