Abstract
Transition metal dichalcogenides (TMDCs), such as tungsten disulfide (WS(2)), are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Recent advances in nanoscale materials characterization and few layer TMDCs' unique optical properties make them a research hot-spot in nonlinear optics. In this work, the nonlinear refractive index of monolayer WS(2) has been characterized with Z-scan measurement under 800nm femtosecond pulsed laser excitation, and a value of n2 ≃ (8.1 ± 0.41) × 10(-13)m(2)/W is obtained. A shift from saturable absorption to reverse saturable absorption was observed at higher input pump intensities in the experiments. The transition process was analyzed using a phenomenological model based on two photon absorption, and the two photon absorption coefficient was estimated about (3.7±0.28)×10(-6)m/W.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.