Abstract

Topological nonsymmorphic crystalline superconductivity (TNCS) is an intriguing phase of matter, offering a platform to study the interplay between topology, superconductivity, and nonsymmorphic crystalline symmetries. Interestingly, some of TNCSs are classified into Z_{4} topological phases, which have unique surface states referred to as a Möbius strip or an hourglass, and they have not been achieved in symmorphic superconductors. However, material realization of Z_{4} TNCS has never been known, to the best of our knowledge. Here, we propose that the paramagnetic superconducting phase of UCoGe under pressure is a promising candidate of Z_{4}-nontrivial TNCS enriched by glide symmetry. We evaluate Z_{4} invariants of UCoGe by deriving the formulas relating Z_{4} invariants to the topology of Fermi surfaces. Applying the formulas and previous abinitio calculations, we clarify that three odd-parity representations out of four are Z_{4}-nontrivial TNCS, whereas the other is also Z_{2}-nontrivial TNCS. We also discuss possible Z_{4} TNCS in CrAs and related materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call