Abstract
We construct strongly anisotropic quantum droplets with embedded vorticity in the 3D space, with mutually perpendicular vortex axis and polarization of atomic magnetic moments. Stability of these anisotropic vortex quantum droplets (AVQDs) is verified by means of systematic simulations. Their stability area is identified in the parametric plane of the total atom number and scattering length of the contact interactions. We also construct vortex-antivortex-vortex bound states and find their stability region in the parameter space. The application of a torque perpendicular to the vorticity axis gives rise to robust intrinsic oscillations or rotation of the AVQDs. The effect of three-body losses on the AVQD stability is considered too. The results show that the AVQDs can retain the topological structure (vorticity) for a sufficiently long time if the scattering length exceeds a critical value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.