Abstract
BackgroundThe transcription factor YY1 is an important regulator for metabolic homeostasis. Activating mutations in YY1 lead to tumorigenesis of pancreatic β-cells, however, the physiological functions of YY1 in β-cells are still unknown. Here, we investigated the effects of YY1 ablation on insulin secretion and glucose metabolism. MethodsWe established two models of β-cell-specific YY1 knockout mice. The glucose metabolic phenotypes, β-cell mass and β-cell functions were analyzed in the mouse models. Transmission electron microscopy was used to detect the ultrastructure of β-cells. The flow cytometry analysis, measurement of OCR and ROS were performed to investigate the mitochondrial function. Histological analysis, quantitative PCR and ChIP were performed to analyze the target genes of YY1 in β-cells. ResultsOur results showed that loss of YY1 resulted in reduction of insulin production, β-cell mass and glucose tolerance in mice. Ablation of YY1 led to defective ATP production and mitochondrial ROS accumulation in pancreatic β-cells. The inactivation of YY1 impaired the activity of mitochondrial oxidative phosphorylation, induced mitochondrial dysfunction and diabetes in mouse models. ConclusionOur findings demonstrate that the transcriptional activity of YY1 is essential for the maintenance of mitochondrial functions and insulin secretion in β-cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have