Abstract
We consider supercritical Bernoulli bond percolation on a large $b$-ary tree, in the sense that with high probability, there exists a giant cluster. We show that the size of the giant cluster has non-gaussian fluctuations, which extends a result due to Schweinsberg in the case of random recursive trees. Using ideas in the recent work of Bertoin and Uribe Bravo, the approach developed in this work relies on the analysis of the sub-population with ancestral type in a system of branching processes with rare mutations, which may be of independent interest. This also allows us to establish the analogous result for scale-free trees.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have