Abstract

In the current work, n-type Y-doped ZnO nanowires (n-Y:ZnO) and p-type Si heterojunctions are fabricated by employing two-step chemical bath deposition (CBD) process. The work demonstrates the systematic incorporation of Y in ZnO nanowires for achieving the low power UV response. The crystalline nature, morphology, chemical compositions of doped nanowires are studied extensively by employing XRD, FESEM, HRTEM, elemental mapping, EDS and XPS. The change in defect states due to Y incorporation has been studied in detail by using deconvoluated PL spectra. The results indicate that ZnO nanowires exhibit Zn interstitials dependent huge UV/blue luminescence and oxygen vacancy related lowest green luminescence simultaneously for selective 1% Y-doping. The best self-powered photoresponse has been achieved for 1% Y-doped ZnO nanowires/p-Si heterojunction under relatively low power UV illumination (374 nm @5 mW/cm2). More significantly, at self-powered mode, such heterojunction has been delivered a stable and fast (<1 s) photoresponse with a maximum responsivity of 225 mA/W and high On/Off ratio of ∼104. The work provides an insight into the fabrication of heterojunction UV detectors for next-generation self-powered, large area optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.