Abstract
Hf1-xZrxO2 (HZO) thin films are versatile materials suitable for advanced ferroelectric semiconductor devices. Previous studies have shown that the ferroelectricity of HZO thin films can be stabilized by doping them with group III elements at low concentrations. While doping with Y improves the ferroelectric properties, there has been limited research on Y-HZO thin films fabricated using atomic layer deposition (ALD). In this study, we investigated the effects of Y-doping cycles on the ferroelectric and electrical properties of as-deposited Y-HZO thin films with varying compositions fabricated through ALD. The Y-HZO thin films were stably crystallized without the need for post-thermal treatment and exhibited transition behavior depending on the Y-doping cycle and initial composition ratio of the HZO thin films. These Y-HZO thin films offer several advantages, including enhanced dielectric constant, leakage current density, and improved endurance. Moreover, the optimized Y-doping cycle induced a phase transformation that resulted in Y-HZO thin films with improved ferroelectric properties, exhibiting stable behavior without fatigue for up to 1010 cycles. These as-deposited Y-HZO thin films show promise for applications in semiconductor devices that require high ferroelectric properties, excellent electrical properties, and reliable performance with a low thermal budget.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.