Abstract

The yttrium doping effect on grain boundary diffusion was directly estimated using bicrystal experiments. For this purpose, pristine and yttrium-doped α-Al 2O 3 bicrystals with the same geometrical configuration were fabricated. The grain boundary oxygen diffusion coefficients were measured by the isotopic tracer profiling technique using secondary ion mass spectrometry. The grain boundary diffusion coefficients of the pristine and yttrium-doped boundary were best described as δ D gb = 8.4 × 10 - 6 exp - 627 [ kJ/mol ] / RT and δ D gb = 6.5 × 10 - 4 exp - 729 [ kJ/mol ] / RT , respectively. It was thus found that yttrium doping retards grain boundary diffusivity by approximately 10 times compared to the pristine crystals, while their activation energies were not greatly different. On the other hand, the simultaneously obtained volume diffusion coefficient showed similar values to previously reported results, indicating that extrinsic diffusion occurred in the grain interior. Taking these facts into account, the yttrium effect can be explained by a “site blocking” mechanism or a “swamp out” mechanism, or by both of these.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.