Abstract

Delivery of young bone marrow-derived stem cells offers a novel approach for restoring the impaired senescent cardiac angiogenic function that may underlie the increased morbidity and mortality associated with ischemic heart disease in older individuals. Recently, we reported that alterations in endothelial cells of the aging heart lead to a dysregulation in the cardiac myocyte platelet-derived growth factor (PDGF)-B-induced paracrine pathway, which contributes to impaired cardiac angiogenic function. Based on these results, we hypothesized that cellular restoration of the PDGF pathway by bone marrow-derived endothelial precursor cells (EPCs) could reverse the aging-associated decline in angiogenic activity. In vitro studies revealed that young murine (3-month-old) bone marrow-derived EPCs recapitulated the cardiac myocyte-induced expression of PDGF-B, whereas EPCs from the bone marrow of aging mice (18-month-old) did not express PDGF-B when cultured in the presence of cardiac myocytes. Transplantation of young, but not old, genetically marked syngeneic bone marrow cells into intact, unirradiated aging mice that populated the endogenous senescent murine bone marrow incorporated into the neovasculature of subsequently transplanted syngeneic neonatal myocardium. Moreover, the young bone marrow-derived EPCs restored the senescent host angiogenic PDGF-B induction pathway and cardiac angiogenesis, with graft survival and myocardial activity in the aging murine host (cardiac allograft viability: 3-month-old controls, 8/8; 18-month-old controls, 1/8; 18-month-old donors receiving bone marrow from 3-month-old mice, 15/16; or 18-month-old mice, 0/6; P<0.05). These results may offer a foundation for the development of novel therapies for the prevention and treatment of cardiovascular disease associated with aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.