Abstract
A combination of passive, non-invasive and nonintrusive smart monitoring technologies is currently transforming healthcare. These technologies will soon be able to provide immediate health related feedback for a range of illnesses and conditions. Such tools would be game changing for serious public health concerns, such as seasonal cold and flu, for which early diagnosis and social isolation play a key role in reducing the spread. In this regard, this paper explores, for the first times, the automated classification of individuals with Upper Respiratory Tract Infections (URTI) using recorded speech samples. Key results presented indicate that our classifiers can achieve similar results to those seen in related health-based detection tasks indicating the promise of using computational paralinguistic analysis for the detection of URTI related illnesses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.