Abstract

There exists remarkable interspecific variation in mitochondrial sequence evolution rates and in mitochondrial genome sizes. A number of hypotheses based on the forces of mutation and selection have been proposed to explain this variation. Among such hypotheses, we test three: 1) the 'longevity-dependent selection', 2) the 'functional constraints' and 3) the 'race for replication' hypotheses, using published mtDNA genomic sequences of 47 Nematoda species. We did not find any relationship between body size (used as a proxy for longevity) and genome size or the substitution rate of protein sequences, providing little evidence for the first hypothesis. Parasitic species from different thermal habitats, as determined by their definitive host type (ectothermal vs. endothermal), did not differ in their rates of protein evolution. Therefore, little support was obtained for the second hypothesis. However, we revealed that mitogenomes of parasites of endotherms were significantly smaller than those of parasites of ectotherms, supporting the race for replication hypothesis. As mitochondrial genomes of endothermal animals are usually more compact than those of ectothermal animals, intriguingly, nematode parasites of endotherms and ectotherms exhibit similar patterns of mtDNA length variation to their hosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.