Abstract
The intelligent detection of young peaches is the main technology of fruit-thinning robots, which is crucial for enhancing peach fruit quality and reducing labor costs. This study presents the lightweight YOLO-PEM model based on YOLOv8s to achieve high-precision and automatic detection of young “Okubo” peaches. Firstly, the C2f_P module was devised by partial convolution (PConv), replacing all C2f modules in YOLOv8s to achieve the model’s lightweight. Secondly, embedding the efficient multi-scale attention (EMA) module in the lightweight C2f_P_1 module of the backbone network enhanced the feature extraction capability and accuracy for young peaches. Finally, the MPDIoU loss function was utilized to replace the original CIoU loss function, which improved the detection accuracy of the bounding box while speeding up the convergence of the model. The experimental results demonstrate that the YOLO-PEM model achieved an average precision (AP) of 90.86%, F1 score of 86.70%, and model size of 16.1 MB, which was a 1.85% improvement in the AP, 0.85% improvement in the F1 score, and 5.3 MB reduction in the model size compared with YOLOv8s. The AP was 6.26%, 6.01%, 2.05%, 2.12%, and 1.87% higher compared with the other lightweight detection models YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, YOLOv6s, and YOLOv7-tiny, respectively. Furthermore, the FPS of YOLO-PEM was 196.2 f·s-1, which can fulfill the demand for the real-time detection of young peaches. YOLO-PEM effectively detects young peaches in complex orchard environments and can offer a basis for the theoretical design of the vision system of the “Okubo” peach fruit-thinning robot and scientific management of orchards.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have