Abstract
Herein, carbon-incorporated yolk-shell ZnO@C-CeO2 ternary heterostructures are employed as visible light responsive photocatalyst for highly efficient photoelectrochemical (PEC) water splitting. Compared to conventional ZnO/CeO2 semiconductors, introduction of a thin PDA shell layer assures the generation of a conductive N-doped graphitic carbon layer after a calcination post-treatment with mesoporous hollow morphologies. The evaluation of PEC water splitting performance of ZnO@C-CeO2 photoanodes reveals the maximum photocurrent density as 7.43 mA/cm2 at 1.18 V RHE under light whereas almost no response is recorded at dark. These superior PEC H2 evolution performance strongly implies efficient charge separation, facilitated charge transfer between photoanode and electrolyte interface as well as within the semiconductor bulk by means of rapid electron transfer ability of N-doped graphitic carbon layer and prolong life time of light inside yolk-shell structure. Furthermore, considerable depression in PL intensity of ZnO@C-CeO2 photoanodes compared to ZnO clearly reveals a higher photon absorption due to the reflection of light in hollow region and increase in electron hole separation efficiency. Moreover, plausible Z-scheme charge transfer mechanism using ZnO@C-CeO2 photoanodes under visible light illumination is verified using radical trapping experiments and X-ray photoelectron spectroscopy (XPS) methods, suggesting new generation of heterostructures for sufficient conversion of sunlight to H2 fuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.