Abstract

Most existing segmentation networks are built upon a “ U -shaped” encoder–decoder structure, where the multi-level features extracted by the encoder are gradually aggregated by the decoder. Although this structure has been proven to be effective in improving segmentation performance, there are two main drawbacks. On the one hand, the introduction of low-level features brings a significant increase in calculations without an obvious performance gain. On the other hand, general strategies of feature aggregation such as addition and concatenation fuse features without considering the usefulness of each feature vector, which mixes the useful information with massive noises. In this article, we abandon the traditional “ U -shaped” architecture and propose Y-Net, a dual-branch joint network for accurate semantic segmentation. Specifically, it only aggregates the high-level features with low-resolution and utilizes the global context guidance generated by the first branch to refine the second branch. The dual branches are effectively connected through a Semantic Enhancing Module, which can be regarded as the combination of spatial attention and channel attention. We also design a novel Channel-Selective Decoder (CSD) to adaptively integrate features from different receptive fields by assigning specific channelwise weights, where the weights are input-dependent. Our Y-Net is capable of breaking through the limit of singe-branch network and attaining higher performance with less computational cost than “ U -shaped” structure. The proposed CSD can better integrate useful information and suppress interference noises. Comprehensive experiments are carried out on three public datasets to evaluate the effectiveness of our method. Eventually, our Y-Net achieves state-of-the-art performance on PASCAL VOC 2012, PASCAL Person-Part, and ADE20K dataset without pre-training on extra datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.