Abstract

Page segmentation and table detection play an important role in understanding the structure of documents. We present a page segmentation algorithm that incorporates state-of-the-art deep learning methods for segmenting three types of document elements: text blocks, tables, and figures. We propose a multi-scale, multi-task fully convolutional neural network (FCN) for the tasks of semantic page segmentation and element contour detection. The semantic segmentation network accurately predicts the probability at each pixel of the three element classes. The contour detection network accurately predicts instance level edges around each element occurrence. We propose a conditional random field (CRF) that uses features output from the semantic segmentation and contour networks to improve upon the semantic segmentation network output. Given the semantic segmentation output, we also extract individual table instances from the page using some heuristic rules and a verification network to remove false positives. We show that although we only consider a page image as input, we produce comparable results with other methods that relies on PDF file information and heuristics and hand crafted features tailored to specific types of documents. Our approach learns the representative features for page segmentation from real and synthetic training data. %, and produces good results on real documents. The learning-based property makes it a more general method than existing methods in terms of document types and element appearances. For example, our method reliably detects sparsely lined tables which are hard for rule-based or heuristic methods.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call