Abstract

Effective yield enhancement for the surface of silicon wafers of solar cells was developed using electrochemical micromachining and a design disc-form tool as a precision recycling module for Si 3N 4 thin-film microstructures and epoxy film. The low yields of epoxy films and Si 3N 4 thin-film deposition are important issues in semiconductor production. The current approach uses strong acid and grinding and may cause both damage to the physical structure of silicon wafers and pollution. Electrochemical micromachining allows the removal of the surface Si 3N 4 layer and epoxy film from the silicon wafers and may lead to the development of a mass production system for recycling defective or discarded silicon wafers of solar cells. A high feed rate of the silicon wafers of solar cells combined with enough electric power produces fast machining performance during etching. High rotational speed of the disc-form tool leads to high dreg discharge mobility and a good etching effect. A small height or a small bitter end radius of the anode corresponds to a high removal rate of the Si 3N 4 and epoxy. A small surface area of the cathode also corresponds to a high removal rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.