Abstract

A new recycling fabrication method using a custom-built designed circular-rhombus tool for a process combining of micro-electroetching and electrochemical machining for removal of the surface layers from silicon wafers of solar cells is demonstrated. The low yields of epoxy film and Si3N4 thin-film depositions are important factors in semiconductor production. The aim of the proposed recycling fabrication method is to replace the current approach, which uses strong acid and grinding and may damage the physical structure of silicon wafers and pollute to the environment. A precisely engineered clean production approach for removal of surface microstructure layers from silicon wafers is to develop a mass production system for recycling defective or discarded silicon wafers of solar cells that can reduce pollution and cost. A large diameter cathode of the circular-rhombus tool (with a small gap between the anode and the cathode) corresponds to a high rate of epoxy film removal. A high feed rate of the silicon wafers combined with a high continuous DC electric voltage results in a high removal rate. The high rotational speed of the circular-rhombus tool increases the discharge mobility and improves the removal effect associated with the high feed rate of the workpiece. A small port radius or large end angle of the rhombus anode provides a large discharge space and good removal effect only a short period of time is required to remove the Si3N4 layer and epoxy film easily and cleanly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.