Abstract

In semiarid climates, appropriate management of the previous crop stubble in combination with seeding method is important to improve growing conditions for the subsequent crop. To determine the effects of standing stubble of various heights on the microclimate and on the growth and yield of pulse crops, we seeded desi chickpea (Cicer arietinum L. “Cheston”), field pea (Pisum sativum L. “Grande”), and lentil (Lens culinaris L. “Laird”) directly into cultivated, short (15 to 18 cm), and tall (25 to 36 cm) spring wheat (Triticum aestivum L.) stubble. Standing stubble changed the microclimate near the soil surface by reducing soil temperatures, solar radiation, wind speed, and potential evapotranspiration throughout the life cycle of these crops. Microclimate effects were much more pronounced for tall versus short stubble. The three pulses responded similarly to increasing stubble height. Vine length increased as stubble height increased, but the plants did not stand more erect. However, there was a tendency for plant height to increase as stubble height increased. Tall and short stubble increased the overall average grain yield by 13 and 4% compared to cultivated stubble. Crop water use was not affected by stubble height so the increased grain production was due to increased water use efficiency. Tall and short stubble increased the overall average water use efficiency by 16 and 8% compared to cultivated stubble. Key words: Stubble height, pulse, microclimate, evapotranspiration, yield

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.