Abstract
Field-grown cut and dried flowers could provide a high-value crop selection for New Mexico. We conducted a 1-year field study to evaluate flower yield and quality characteristics of common globe amaranth (Gomphrena globosa), ‘Strawberry Fields’ globe amaranth (Gomphrena haageana), cockscomb celosia (Celosia argentea var. cristata ‘Chief Mix’), and wheat celosia (Celosia spicata ‘Pink Candle’). Within-row spacing of 15 or 20 cm combined with two-row or three-row per bed plantings resulted in field planting densities ranging from 66,670 to 120,010 plants/ha of common globe amaranth and ‘Strawberry Fields’ globe amaranth, and 100,005 to 200,010 plants/ha of cockscomb and wheat celosia. All but cockscomb celosia produced four harvests that began 22 May and ended 18 Oct., depending on species. Both globe amaranth species had a 5- to 6-month harvest season, two to three midseason to late-season peak harvests, and over 1000 harvested stems totaling 1.4 to 1.8 kg dry weight per 1.5-m2 plot across the season. Both celosia species had a 4.5-month harvest season, one early summer peak harvest, and fewer than 300 harvested stems totaling 0.6 to 0.7 kg dry weight per plot for the year. Seasonally progressive increases in flowering stem length of both globe amaranth species and wheat celosia, and in flowering stem diameter of both globe amaranth species and cockscomb celosia, were observed. Flowering head size of both globe amaranth species and of wheat celosia varied little with harvest season, whereas the head diameter of cockscomb celosia increased with the season. Postharvest flower retention after mechanical impact was about 2% higher for common globe amaranth than it was for ‘Strawberry Fields’ globe amaranth, decreased by about 6% from early to later harvests for both celosia species, and was inversely related to the head size of both globe amaranth species and cockscomb celosia. Despite the wide range in planting density, the density effect was largely limited to cockscomb celosia. For that species, three-row planting (high density) increased the total number of spray flower (multiple head) stems, provided longer stems later into the season and wider heads midway into the season, and prolonged the production of spray stems (15-cm spacing only). Results demonstrate that these four species are excellent candidates as new specialty crops in semiarid conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have