Abstract

Abstract ZnO nanoparticles codoped with Al and Li were chemically synthesized with a low temperature drying process. They are crystalline and can be made as small as 5 nm. Intense yellowish white photoluminescence was observed from smaller ZnO nanoparticles with a higher concentration of Al and Li. The photoluminescence peak consists of yellow and green emission bands. Both peak intensities increase with increasing the Al and Li concentrations and with decreasing the size of ZnO nanoparticles. The green and yellow emission bands were attributed to donor–acceptor-pair recombination involving Zn vacancies and lithium as the acceptor state, respectively, and the donor responsible for both emissions to oxygen vacancies. Both enhanced emissions by codoping may be explained by an increase in the number of electrons occupying the deep donor level on account of doping with Al. Although the yellowish white emission decays with time, passivation of the crystallite surface with poly(p-phenylene vinylene) suppresses the degradation. The observed high-intensity and stable yellowish white emission makes PPV-passivated ZnO nanoparticles, codoped with Al and Li, more attractive as a candidate for “white” phosphor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call