Abstract

A tom1-1 mutant was isolated from Saccharomyces cerevisiae. At high temperatures, 60% of the cells were arrested as dumbbell forms with a single large nucleus containing duplicated DNA and a short spindle. Electron-microscopy showed electron-dense structures scattered within the nucleus. Indirect immunofluorescent microscopy revealed these structures to be fragmented nucleoli since the dotted structures were stained with anti-Nop1(fibrillarin) antibody in large regions of the nuclei. Fluorescent in situ hybridization analysis using oligo(dT) revealed nuclear accumulation of poly(A)+RNA. We cloned TOM1 which encodes a large protein (380kDa) with a hect (homologous to E6-AP C terminus)-domain at its C terminus. Deletions of either this hect-region or the entire gene made cellular growth temperature-sensitive. Site-directed mutagenesis of the conserved cysteine residue (tom1C3235A) in the hect-domain, supposed to be necessary for thioester-bond formation with ubiquitin, abolished the gene function. When a functional glutathione S-transferase (GST)-tagged hect protein was overproduced, it facilitated the protein conjugation with a myc-tagged ubiquitinRA, while this was not seen when GST-hectC3235A was overproduced. The protein conjugation with a hemagglutinin-tagged Smt3 was not affected by the overproduction of GST-hect. Taken together, we suggest that Tom1 is a ubiquitin ligase. As a multi-copy suppressor of tom1, we isolated STM3/NPI46/FPR3 which encodes a nucleolar nucleolin-like protein. We discuss possible functions of Tom1 with respect to the pleiotropic defects of nuclear division, maintenance of nuclear structure, and nucleocytoplasmic transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.