Abstract
Transgenic mice, including those created using Bacterial Artificial Chromosomes (BACs), are artificial manipulations that have become critical tools for studying gene function. While conventional transgenic techniques face challenges in achieving precise expression of foreign genes in specific cells and tissues, BAC transgenic mice offer a solution by incorporating large DNA segments that can include entire expression units with tissue-specific enhancers. This review provides a thorough examination of BAC transgenic mouse technology, encompassing both traditional and humanized models. We explore the benefits and drawbacks of BAC transgenesis compared to other techniques such as knock-in and CRISPR/Cas9 technologies. The review emphasizes the applications of BAC transgenic mice in various disciplines, including neuroscience, immunology, drug metabolism, and disease modeling. Additionally, we address crucial aspects of generating and analyzing BAC transgenic mice, such as position effects, copy number variations, and strategies to mitigate these challenges. Despite certain limitations, humanized BAC transgenic mice have proven to be invaluable tools for studying the pathogenesis of human diseases, drug development, and understanding intricate gene regulatory mechanisms. This review discusses current topics on BAC transgenic mice and their evolving significance in biomedical research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.