Abstract

Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a single polypeptide protein with a molecular weight of 116,000 required by yeast ribosomes for in vitro translation and for in vivo growth. The YEF3 gene, located on chromosome xii, is essential for the survival of yeast. The deduced amino acid sequence of EF-3 has revealed the presence of duplicated ATP-binding cassettes similar to those present in the membrane associated transporters. The carboxy-terminus of EF-3 contains blocks of lysine boxes essential for its functional interaction with yeast ribosomes. EF-3 stimulates binding of aminoacyl-tRNA to the ribosomal A-site by facilitating release of deacylated tRNA from the exit site (E-site). Chasing experiments revealed that EF-3 enhances the rate of tRNA dissociation from the E-site by a factor of two without affecting the affinity of the site for tRNA. EF-3 function is dependent on ATP hydrolysis. The existence of functional homologs of EF-3 in higher eukaryotes is still an open question. Further investigations are needed to settle this issue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.