Abstract

Two elongation factors drive the ribosomal elongation cycle; elongation factor 1 alpha (EF-1 alpha) mediates the binding of an aminoacyl-tRNA to the ribosomal A site, whereas elongation factor 2 (EF-2) catalyzes the translocation reaction. Ribosomes from yeast and other higher fungi require a third elongation factor (EF-3) which is essential for the elongation process, but the step affected by EF-3 has not yet been identified. Here we demonstrate that the first and the third tRNA binding site (A and E sites, respectively) of yeast ribosomes are reciprocally linked; if the A site is occupied the E site has lost its binding capability, and vice versa, if the E site is occupied the A site has a low affinity for tRNAs. EF-3 is essential for EF-1 alpha-dependent A site binding of amino-acyl-tRNA only when the E site is occupied with a deacylated tRNA. The ATP-dependent activity of EF-3 is required for the release of deacylated tRNA from the E site during A site occupation.

Highlights

Read more

Summary

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call