Abstract

The second fermentation is one of the most important steps in Champagne production. For this purpose, yeasts are grown on a wine based medium to adapt their metabolism to ethanol. Several models built with various static and dynamic neural network configurations were investigated. The main objective was to achieve real-time estimation and prediction of yeast concentration during growth. The model selected, based on recurrent neural networks, was first order with respect to the yeast concentration and to the volume of CO2 released. Temperature and pH were included as model parameters as well. Yeast concentration during growth could thus be estimated with an error lower than 3% (±1.7×106 yeasts/ml). From the measurement of initial yeast population and temperature, it was possible to predict the final yeast concentration (after 21 hours of growth) from the beginning of the growth, with about ±3×106 yeasts/ml accuracy. So a predictive control strategy of this process could be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.