Abstract
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison between static and dynamic neural network models in forecasting (uninvariable) the return of Tehran Stock Exchange (TSE) index in order to find the best model to be used for forecasting this series. The data were collected daily from 26/11/2009 to 17/10/2014. The models examined in this study included two static models (Adaptive Neuro-Fuzzy Inference Systems and Multi-layer Feed-forward Neural Network MFNN) and a dynamic model (nonlinear neural network autoregressive model NNAR). The findings showed that based on the Mean Square Error and Root Mean Square Error criteria, ANFIS model had a much higher forecasting ability compared to other models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.